列表策略
列表策略,又叫列举策略。是将问题的条件信息用表格的形式列举出来,便于从中发现问题、分析数量关系,从而排除非数学信息的干扰,同时也便于找到解决问题的方法。
例:有1张五元纸币,2张两元纸币,8张1元纸币,要拿9元钱,有几种拿法?
5元纸币 | 2元纸币 | 1元纸币 | 情况 |
1张 | 2张 | 0张 | 3种 |
1张 | 2张 | ||
0张 | 4张 | ||
0张 | 4张 | 1张 | 4种 |
3张 | 3张 | ||
2张 | 5张 | ||
1张 | 7张 |
用列表的方法把各种情况一一列举出来,这样就能做到既不重复也不遗漏。
枚举策略
在解决一些特殊问题时,有时候没有办法列算式,这个时候列举出被研究对象的所有可能情况,则能使问题比较容易地获得解决。和列表策略一样,在枚举时也要做到有序思考,这样才能做到不重不漏。
例:已知三角形的一个内角为50°,它与邻角之差为30°,求这个三角形另外两个内角的度数。
分析:根据题目条件,与内角50°相邻的内角可能是“50°-30°”;也可能是“50°+30°”。于是便有下面两种可能情况。(1)当此相邻内角为50°-30°=20°时,三角形另外一个内角为180°-50°-20°=110°。(2)当此相邻内角为50°+30°=80°时,三角形另外一个内角为180°-50°-80°=50°。答:这个三角形另外两个内角为20°、110°或80°、50°。
替换策略
“替”,顾名思义就是“替代”;“换”,自然就是“更换”的意思。替换策略是用来解决几个数量与总量之间的关系问题。运用替换策略能把两个量与总量的关系简化为一个量与总量的关系,从而有助于解决问题。
例:体育课上练习拍皮球,四(2)班有44位同学,每人需要一个球。班干部在课前帮同学们去运皮球。体育室有4个大框和2个小筐,正好装完44个皮球且每个筐都装满。每个大筐比小筐能多装2个皮球。每个小筐和大筐各能装几个皮球?
分析:运用替换的策略,可以把4个大筐替换为4个小筐,则4+2=6个小筐所装的皮球的总量就比原来的44个皮球少2×4=8个皮球。因此,每个小筐可以装(44-8)÷6=6个皮球,每个大框可以装6+2=8个皮球。也可以把2个小筐替换为2个大筐,则4+2=6个大筐所装的皮球的总量就比原来的44个皮球多2×2=4个皮球。因此,每个大筐可以装(44+4)÷6=8个皮球,每个小筐可以装8-2=6个皮球。
逆推策略
逆推,即“逆回来、倒过去”推想,也叫倒推法、还原法。就是从事情的结果出发,倒过去推想它最开始是怎样的。当我们已知“现在”的状态,要去求“原来”时,常常可以运用逆推策略帮助思考。
例:强强、壮壮、婷婷共有30支棒棒糖。强强给壮壮6支,壮壮再给婷婷8支,现在三人就有同样多的棒棒糖。原来强强、壮壮、婷婷各有多少支棒棒糖?
分析:根据现在三人的棒棒糖同样多,可以先求出现在每人有30÷3=10支棒棒糖。然后分别运用逆推策略进行思考,还原到变化之前每人的棒棒糖有几支,从而简洁地解决问题。强强原来有10+6=16支棒棒糖,壮壮原来有10+8-6=12支棒棒糖,婷婷原来有10-8=2支棒棒糖。最后,再通过加法检验一下。16+12+2=30支,总和的确是30支棒棒糖,说明做对了。在孩子解题时,家长要鼓励他们使用不同的解题策略,如果是碰到难题,更可以提醒他们试一试不常使用的策略,说不定灵感就会突然爆发。
同一个知识内容,不同的理解角度、不同的思维方式,所选择的解题策略也会有所不同。我们平时要尽可能多地掌握解决问题的一些策略,在遇到具体问题时灵活判断和选择相关策略进行综合运用,从而提高解决问题的能力,提高自己的解题效率。